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 Reactor Pressure Vessel (RPV) is very important for reactor 

operation and safe inclusion of fission products

• Fuel elements (core) 

• Physical barrier 

• Core cooling function

 RPV is almost impossible to replace

Installation of 

the EPRTM

RPV in NPP 

Olkiluoto 3  

2010

EPRTM

(European 

Pressurized 

Water Reactor)
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 RPV integrity is a design principle for safe inclusion of the 

activity inventory

• to be maintained during operation

 Requirement of both RPV monitoring and structural mechanical 

analyses

German PWR 

1300 MW

13

2

1 RPV

Steam generator heat tubes

Main coolant lines

[1]
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RPV AGEING 

MECHANISMS
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 Influencing factors

• Irradiation by fast neutrons

− Neutron  generation in the 

core

− Impact on RPV beltline

• Gamma irradiation

• Thermal loading by hot 

coolant

• Some hydrogen by radiolysis 

and water chemistry regime

RPV of EPRTM [2]
Tinlet=296 °C
pop=155 bar
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 Irradiation by fast neutrons

• Formation of microstructural lattice defects

1MeV

Model concept according to Alfred Seeger [3]
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 Impact of irradiation by fast neutrons (E > 1 MeV) on the 

microstructure in the RPV beltline region

• Ferritic low alloy steel

Core

Axial 

Neutron Fluence

150

0

150

100 10-1

cm

jrel

• Matrix damage

• Cu-Rich Precipitates (CRP) 

with Ni, Mn, Si, …

• P segregation on grain 

boundary
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 Impact of fast neutron fluence ( >1017 n/cm2) on the 

material properties in the RPV beltline region
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 Thermal Ageing of RPV Materials

• For western RPV steels with Cu ≤ 0.25% thermal ageing is not observed 

for T ≤ 325°C for long operating times, however some recent indications 

found for Ni ≥ 1.2 % 

• No thermal ageing in LWR RPV steels with Cu < 0.35% and T < 300 °C

• Some significance in Magnox type reactors (UK) in C-Mn RPV steels with 

360 °C exposure temperature

 Other Influencing Factors

• Hydrogen: no effect under operating conditions (embrittlement of 

ferritic RPV material by hydrogen no more detectable at 250°C )

• Gamma irradiation: not significant at LWR operating temperatures due 

to strong annealing effects

− No indications of g-irradiation effect on change of material properties of 
ferritic RPV materials under operating conditions

− If any g effect would exist it is limited on the surface of inner RPV wall 

because the attenuation for g is higher than for neutrons
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RPV IRRADIATION 

SURVEILLANCE PROGRAMMES
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 Management of RPV Irradiation Behavior

 Irradiation Surveillance 

Programs

✓ Monitoring material changes

depending on neutron fluence

 RPV Integrity Assessment

✓ Fracture mechanics based 

PTS analysis 

✓ p-T curves, in-service 

pressure tests

Assessment

 Core Loading Management

✓ Low leakage

 RPV Neutron Shielding

✓ Dummy assemblies

✓ Internals replacement

 Thermal Annealing

✓ Recovery heat treatment

Countermeasures
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 Objective

• Measurement of strength and toughness properties of materials in the 

RPV core beltline region as a function of neutron irradiation by 

accelerated irradiation specimen capsules (position nearer to the core)
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 Base and weld materials are monitored in the RPV core 

beltline

Sampling

X

Y

Core weld
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Implementation

Material labHot cells

Pre & post examination

Assessment of irradiation behaviour

Design and Manufacture

Report

03/09/2018 16SOTERIA Training School - September 2018 - Polytechnic University of Valencia

RPV Irradiation Surveillance 
Programmes



 Main steps

• Manufacture of specimens, fluence dosimeters, temperature monitors, 

and capsules

• Insertion, irradiation and take out of capsules

• Transportation services

• Radiochemical examinations and activity 

determination of neutron dosimeters

• Neutron fluence calculations for specimens 

and RPV wall (Dosimetry)

• Mechanical testing in the „Hot Cells“ laboratory 

(tensile, Charpy-V, fracture mechanical)

• Evaluation of the results and RPV  safety assessment according to 

regulatory requirements
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Dosimetry - Dual concept of fast neutron fluence calculation

Data for theoretical calculation

of neutron fluence:

• core burn-up data

• geometry

• material data

• cross section library 

(ENDF/B-VI)

Dosimetry data for 

fluence detectors:

• 54Fe(n,p)54Mn

• 93Nb(n,n’)93mNb

(IRDF2002)

Detector activity

Irradiation history

Neutron transport

calculation

(MCNPX/DORT)

Theoretical 

neutron fluence

Experimental 

neutron fluence

Experimental fluence

calculation

(MONIKA)

Neutron spectra

Comparison of results

➢ Benchmarking of theoretical calculations

➢ Verification of theoretical approach
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 Dosimetry

• Determination of fast neutron fluence (E > 1 MeV) 

− at dosimeter positions 

− in RPV wall 

• Dosimeters

− Internal dosimeters (inside RPV)

− External dosimeters (outside RPV)

• RPV scraping samples 

− Taken from cladding
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 What else is important to know?

• Take out position and orientation of specimens taken from the (original) 

material blocks

− Tension, Charpy and fracture toughness specimens shall 

be removed from 1⁄4-T or 3⁄4-T locations (base metal)

− Transverse specimens (T-L, longitudinal axis transverse 

to the main direction of forming)

• Lead factor - the ratio of the peak neutron fluence (E > 1 MeV) of the 

specimens in a surveillance capsule to the peak neutron fluence (E > 1 

MeV) at the reactor pressure vessel inside surface

− 1.5 ≤ LF ≤ 12 (Germany)

− 1.5 < LF < 5 (USA)

• Number of the capsules and take out schedule

− Usually 2 to 6 capsules covering the reactor life
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 How to use surveillance data for RPV integrity assessment?
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 How to use surveillance data for RPV integrity assessment?
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Master Curve based 

on direct fracture 

toughness 

measurement acc. 

to[4], [7]



RPV INTEGRITY CONCEPTS
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 Objective: Proof of safety against brittle fracture of the RPV

 The reference temperature (e.g. RTNDTj or RTT0[5]) governs 

the material resistance

 Transients and LOCA govern the load path
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 Areas of postulated flaws of the RPV [4]
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Residual Life Assessment

by Fracture Mechanics
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 Pressurized Thermal Shock (PTS) by Loss Of Coolant 

Accident (LOCA) [4]

RPV

A

A

view A

mixing water

hot water

pump

ECC

plume region

Fluid-Fluid-Mixing
RPV

A

A

view A

mixing water

hot water

pump

ECC

plume region

Fluid-Fluid-Mixing

pffff

postulated
leak

03/09/2018 26SOTERIA Training School - September 2018 - Polytechnic University of Valencia

RPV Integrity Concepts



 Thermal hydraulics at PTS [4], [6]

Strip 

cooling

Plume 

cooling
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 Thermal hydraulic and mechanical analyses at PTS by FEM 

[4], [8]
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 Mechanical analysis of postulated flaws at PTS by FEM [4]
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Betrachtete RDB-Bereiche

RPV Areas under consideration

Hot leg leak 200 cm², Submodel for crack in 

cylindrical region, flaw depth 20 mm

Hot leg leak 200 cm², Submodel for crack in nozzle 

region, flaw depth 20 mm

Example of crack 

geometry
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 Results of deterministic  PTS analysis (example) [4]

Konvoi, cold leg nozzle, flaw depth 10 mm, 

KI from J as a function of crack tip temperature
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 Probabilistic PTS analysis [8], [9], [10], [11], [12], [13]

• Probability per year for failure and crack initiation of the RPV

• Define PTS-Screening Criterion (allowed reference temperature for a 

maximum allowed failure probability, see [10])

• Quantify the margins of the deterministic PTS analysis
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SPECIFIC ISSUES IN 

IRRADIATION BEHAVIOUR
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 Chemical composition

 Advantageous RPV design feature

 Long Term operation (see presentation J. May: “RPV Long-

Term Operation Issues” and references [16-22], [24-26])

• Neutron flux effects

• Late blooming effects 

• Predictive models

• Reconstitution technique

• Countermeasures

 National particularities in RPV irradiation surveillance 

programmes
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 Chemical composition

• Impact of high contents of Cu and Ni in RPV steel welds on T41 shift

Low irradiation embrittlement for most of the irradiated materials
except for weld metals P370 WM (0,22 % Cu) and P16 WM (1,7 % Ni)

High Cu or Ni

Low Cu and Ni

H. Hein, et al

“Final Results from the Crack Initiation and 

Arrest of Irradiated Steel Materials Project on 

Fracture Mechanical Assessments of Pre-

Irradiated RPV Steels Used in German PWR”

Journal of ASTM International (2010), 

STP 1513 on Effects of Radiation on Nuclear 

Materials and the Nuclear Fuel Cycle: 24th

Volume [15]
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 Advantageous RPV design feature: large water gap

• Neutron fluences in n/cm2 ( E > 1 MeV) after 32 EFPY for German PWR

[23]

2,8E19              1,3E19                    1E19 3E18
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 National particularities in RPV irradiation surveillance programmes

• Special publication of technical experts from 11 countries on RPV 

irradiation surveillance programs [27]

− Topics discussed include actual surveillance 

capsule testing and associated results; 

applications to evaluating the irradiated 

material toughness results; and identification 

of problem areas identified from conducting 

international surveillance programs.

− 24 peer-reviewed papers divided into five key 

categories:

− Bases for RPV Surveillance Programs

− Neutron Dosimetry for Surveillance Programs

− National Surveillance Programs

− Surveillance for Long-Term Operation

− Experience from Surveillance Programs
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 Annual construction starts and connections to the grid (1954-2016)

• Tendency of increasing number of new NPP builds between 2004 – 2010 

decelerated after 2011

IAEA Reference Data Series No.2 2017 Edition 

Nuclear Power Reactors in the World [14]
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 Reactor Pressure Vessel (RPV) is very important for reactor 

operation and safe inclusion of fission products

 Irradiation by fast neutrons is the most

important ageing mechanism of the RPV  

 RPV irradiation behavior is managed by 

dedicated irradiation surveillance programmes

(mechanical testing of specimens irradiated 

nearer to the core)

 Surveillance results are used in RPV integrity 

assessment

 Proof of safety against brittle fracture of the 

RPV is mandatory
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