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Infroduction

[ Reactor Pressure Vessel (RPV) is very important for reactor

operation and safe inclusion of fission products

The three protective barriers

* Fuel elements (core) g o cladding

* PhYSiCCﬂ barrier B 2 Reactor coolant boundary

I 3 Reactor containment

« Core cooling function Steam

generator

d RPVis almost impossible to replace

Pressurizer

EPR™ Control
(European
Pressurized
Water Reactor)

Installation of
the EPR™
RPV in NPP
Olkiluoto 3
2010
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Infroduction ERIA

d RPV integrity is a design principle for safe inclusion of the
activity inventory

« fo be maintained during operation

d Requirement of both RPV monitoring and s’rruc’rural mechanical
analyses —

O rrv

@ Steam generator heat tubes
@ Main coolant lines

“German PWR |

1300’ MW
[1]

03/09/2018 SOTERIA Training School - September 2018 - Polytechnic University of Valencia 5



RPV AGEING

MECHANISMS
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RPV Ageing Mechanisms

— Level measurement
probe

d Influencing factors

CRDM
adaptator

* Irradiation by fast neutrons o
I &

CRDM adaptor
thermal sleeve

— Neutron generation in the Vissal o

Control rod j H

) Jf—ﬂ
. e _._._._d ===

core Wy g
- Impact on RPV beltline Sppb"
support plate
- Gamma irradiation e ==t o
« Thermal loading by hot % / e
coolant e 1
. . 5:sascetlotr)ody § % Rod cluster
« Some hydrogen by radiolysis ., \ [ oo samnest
H . reflector
and water chemistry regime " | B i p—-
ragaion 7 |
capsule é
él é RPV of EPR™ [2]
% 7
K * Tinie=296 °C
T ) Popmass bar
istribution I
device \_} : K_/
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RPV Ageing Mechanisms

d Irradiation by fast neutrons

 Formation of microstructural lattice defects

1017 i
-
; L
>
-,-m '10,5 close exchange crowdions, propagating
T"' Frenkel pair collisions dynamically
e .
§ o O_ONO_0O_O O 0P OO
5w/ ewenE] 1 MeV ™~
i | 0.0
:_:__‘ cold | primary
g o = ther_mal. epitherfnal knock-on O O
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B ' ' lattice Q
wl . acaney OO
L ‘ s energy O
: transport
R fesonance g by focusing
collisions
B <110>o
R . : :;:"'::::: B e . diluted interstitial
' zone atoms
el 1 o 1 . Model concept according to Alfred Seeger [3]
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RPV Ageing Mechanisms

Qd Impact of iradiation by fast neutrons (E > 1 MeV) on the
microstructure in the RPV beliline region

* Ferritic low alloy steel

Axial
Neutron Fluence i
150 (
cm i * Matrix damage
: ( o
Core U « Cu-Rich Precipitates (CRP)
\ with Ni, Mn, §i, ...
150 "R . .
___________________ « P segregation on grain
10° 10t OPrel boundgry
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RPV Ageing Mechanisms

A Impact of fast neutron fluence ( >10" n/cm?) on the
material properties in the RPV beltline region

- Tension test il
Yield strength, tensile strength (N/mm?) Elongation, reduction of area (%)

i SO
- \ - Nil ductility
Q i transition

' temperature
[\-—-—.—- O

¥
T T

! T 1 T T T
200 O 300 °C 200 O 300 °C 200 O 300 °C

Drop weight test 5

Notched bar impact test

‘ ‘ _ Fracture mechanics test
Energy (J), Lateral expansion (mm) Ductile fracture fraction (%)

Fracture toughness (N/mm?®?)
T T ! T |
/ /
h /
) //
! v
41 Jf - / 7
1 1 T
—— . — - 200 0 300°C
200 O 300 °C 200 0 300°C — Unirradiated ---- Irradiated
03/09/2018
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RPV Ageing Mechanisms

d Thermal Ageing of RPV Materials

« For western RPV steels with Cu < 0.25% thermal ageing is not observed
for T < 325°C for long operating times, however some recent indications
found for Ni> 1.2 %

* No thermal ageing in LWR RPV steels with Cu <0.35% and T < 300 °C

« Some significance in Magnox type reactors (UK) in C-Mn RPV steels with
360 °C exposure temperature

d Ofther Influencing Factors

« Hydrogen: no effect under operating conditions (embrittlement of
ferritic RPV material by hydrogen no more detectable at 250°C )

« Gamma irradiation: not significant at LWR operating temperatures due
to strong annealing effects

— No indications of y-irradiation effect on change of material properties of
ferritic RPV materials under operating conditions

— If any g effect would exist it is limited on the surface of inner RPV wall

because the afttenuation for y is higher than for neutrons
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RPV IRRADIATION

SURVEILLANCE PROGRAMMES
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RPV Irradiation Survelllance

Programmes

O Management of RPV Irradiation Behavior

Assermbly tool Assessment Countermeasures

Irradiation specimen

e ® [rradiation Surveillance ® Core Loading Management
i Programs

v" Low leakage

v" Monitoring material changes o
depending on neutron fluence ® RPV Neutron Shielding

v" Dummy assemblies

® RPV Integrity Assessment

Irradiation channel

_ v" Internals replacement
v" Fracture mechanics based

PTS analysis ® Thermal Annealing

v p-T curves, in-service v Recovery heat treatment
pressure tests

Core barrel

03/09/2018 SOTERIA Training School - September 2018 - Polytechnic University of Valencia 13



RPV Irradiation Survelllance

Programmes
d Objective

* Measurement of strength and toughness properties of materials in the
RPV core beltline region as a function of neutron irradiation by
accelerated irradiation specimen capsules (position nearer to the core)

Assembly tool

Irradiation specimen
column

RPV

=

Irradiation channel

» AAAVAve Wi Z_Z 7N
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RPV Irradiation Survelllance

Programmes

 Base and weld materials are monitored in the RPV core
beltline . g

Ring X

| Sampling

"-

,~‘---‘-.,-I-nn-—-v-y-..,-...,..-
L

Ring Y

¢ : =
¥ Weld =) o
¥ 7 = H
! v = b
i v 7 z
- ~ g
[N N !
W I3 -
L5\ &N N =
AN Ay 20 ‘______,n.‘-——"""
| / ‘:J.———‘ 00—
>, e

ot P
o~
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RPV Irradiation Survelllance

Programmes

Design and Manufacture

-

Pre & post examination

=l w= Jmm
il 1T

Assembly tool

Iradiation specimen
column

RPV

Irradiation channel

200 0 300 200 0 300°C
—— Unimadiated. -~ Irracat ad
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RPV Irradiation Survelllance

Programmes

O Main steps

« Manufacture of specimens, fluence dosimeters, temperature monitors,
and capsules

* |Insertion, irradiation and take out of capsules
» Transportation services

« Radiochemical examinations and activity
determination of neutron dosimeters

» Neutron fluence calculations for specimens
and RPV wall (Dosimetry)

- Mechanical testing in the ,,Hot Cells" laboratory |
(tensile, Charpy-V, fracture mechanical)

» Evaluation of the results and RPV safety assessment according to
regulatory requirements
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RPV Irradiation Survelllance

Programmes

SOTERIA

A Dosimetry - Dual concept of fast neutron fluence calculation

Data for theoretical calculation

of neutron fluence:

* core burn-up data

* geometry

* material data

* cross section library
(ENDF/B-VI)

A 4

Neutron transport

calculation
(MCNPX/DORT)

A 4

Theoretical
neutron fluence

Dosimetry data for
fluence detectors:

* 54Fe(n,p)>*Mn
* BNb(n,n’)?3MNb

(IRDF2002)

Detector activity

Irradiation history

\ 4

A 4

A\ 4

calculation
(MONIKA)

Neutron spectra Experimental fluence

A 4

Experimental
neutron fluence

\ 4

A

Comparison of results

» Benchmarking of theoretical calculations
» Verification of theoretical approach
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RPV Irradiation Survelllance

Programmes
d Dosimetry
« Determination of fast neutron fluence (E> 1 MeV)
— at dosimeter positions e
— in RPV wall Fe- and Nb- V=7
detector
« Dosimeters ~y

- Internal dosimeters (inside RPV) II~ N

— External dosimeters (outside RPV)

« RPV scraping samples

— Taken from cladding L
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RPV Irradiation Survelllance

Programmes

d What else is important to knowe

« Take out position and orientation of specimens taken from the (original)
material blocks

— Tension, Charpy and fracture toughness specimens shall
be removed from 1/4-T or 3/4-T locations (base metal)

— Transverse specimens (T-L, longitudinal axis fransverse
to the main direction of forming)

eylindrical rin

« Lead factor - the ratio of the peak neutron fluence (E > 1 MeV) of the

specimens in a surveillance capsule to the peak neutron fluence (E>1
MeV) at the reactor pressure vessel inside surface

- 1.5<LF<12 (Germany) | ? oo
N7
- ].5 < LF < 5 (USA) ‘ ; }1 RPV

« Number of the capsules and take out schedule HJET

— Usually 2 to 6 capsules covering the reactor life
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RPV Irradiation Survelllance

Programmes

SOTERIA

1 How to use surveillance data for RPV integrity assessment?

o |-© SHAEBITS WCAP-142) de

& RIPLING AND CROSEEY HSSY, .3
1B =7 oom ANNUAL INFORMATION
jeo b= MEETING, 71 AAPER NO, 9

|_® UNPUBLISHED W DATA .
| W MRLARREST DATA 1972 HSST &

RTypor concept:
RTnpr = RTypr + Aly,

plant spec. K, - Curve

INFO MTG

K‘R tkei VINCHES)
ER

1 1T T

unirradiated
adjusted versus RTypt

1 i L
L] -l -8 & ¢ 0 1] 1% 160 o
TEMPERATYRE RELATIVE 10 KOT

Fig. At-1—Derivation of curve of reference siress intensity

factor (K;u) irradiated
adjusted versus

RTy\ptj = RTypr + 4Ty
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RPV Irradiation Surveillonce S)TERIA
Programmes

1 How to use surveillance data for RPV integrity assessment?

m . : lant spec. K- - Curve
a0 O SHABBITS WCAP-1823 be RT Concepi- p P IC

& RIPLING AND CROSEEY HSSY, o .3 TO
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-
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RT;o =Ty + 19.4 K

N
o
o

-/
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a1
o
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ER
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1 1T T

1 i L
L] -l -8 & ¢ 0 1] 1% 160 o
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Fig. At-1—Derivation of curve of reference siress intensity

factor (K;u) irradiated
adjusted versus

RT,, irradiated

Fracture toughness K [MPa*m™/?]

-150 -100 -50 0 50

Temperature [°C]

ASME K, Curve [5]
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RPV INTEGRITY CONCEPTS
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RPV Integrity Concepts

d Objective: Proof of safety against brittle fracture of the RPV

d The reference temperature (e.g. RTpy 0r RT;[3]) governs
the material resistance

d Transients and LOCA govern the load path
& K=o-Vra

Material Resistance|

[ARRRRRRNRN]

Load Path

Stress intensity, Fracture toughness MPavm

acc. to [4]

Temperature (°C)
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RPV Integrity Concepts $OTERIA

d Areas of postulated flaws of the RPV [4]

Residual Life Assessment
by Fracture Mechanics 2c l
- 1 a

ot M = Shape factor 7
Loadability a = Crack depth
2c = Crack length
w = Wall thickness
2cla = o
" e,

\\\'\ 2>
N

0 e ——
‘ /f‘/ﬁ% ///f Matfrlal resistance >> oper_atlonalaioadmg
%%//ﬁ//% K =1 (T, RTuor) > Ki=F(5,,M)
'M%7///g%/ unirradiztce)lé irradiated
!V %g;{é‘ 8 K K Stress intensity factor K,
i i /[ / Change cf ° Ky = Kp + Ky + Kg
O core | N
Defect size z:

Temperature [ °C ] ——
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RPV Integrity Concepts SOTERIA

A Pressurized Thermal Shock (PTS) by Loss Of Coolant
Accident (LOCA) [4]

AT . . .
TN Fluid-Fluid-Mixing
RPV i |
i hot \l/vater L ”
| T — R
= /7( : ? S pump §%>
mixing water : §)>
| AN ! / / {aec;sl;tulated
i ST view A y
N[ Y\
N
NP
A plume region
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RPV Integrity Concepts

d Thermal hydraulics at PTS [4], [6]

Coidleg '[N |REEEEESESESEEN Cold leg

t:'ﬂ.".'-‘- _.x_{ el

i Fldwater layer
il P SR TS

el water Iayer"‘- )

Water layer

Plume
cooling

Strip
cooling

Downcomer
Water level in downcomer

Plume of
cold water
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RPV Integrity Concepts @ER'A

d Thermal hydraulic and mechanical analyses at PTS by FEM
[4]. [8]
iy le+02 |

T
r 8e+02
2e+02
Ge+02
+8.313e
+6€. 156e
+4.000e,
+3.123g
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RPV Integrity Concepts SOTERIA

d Mechanical analysis of postulated flaws at PTS by FEM [4]

RPV Areas under consideration rfw

) —_—
GW 1 - Deckelstege cladding Base metal = \Hmmllmmwn
| I
% / T |
SST1 3 H  Sohraubenbolzen M‘H“I“Im”"ﬂ
i /
ST 3070 15 $8T33.1 - 22° i |
SST33.10 - 135° | i sz 2c ii}u\ ”“III |||HMH -
e G =iz i fi]
o g - . I il
- 3 ' Y 88T 33.5 -202°
STz | | soT e o "”W Nl
gg ggigfg \ L _SST33.8-337° —w g [ i
T w0-132 - SST52/SST 48 ] — 110 -13.4
G R lES\ ms i
e YR e
g%__ [ W Stutzeninnerbkante e N Eintrittstutzen
=] I - .
e ; ! e Example of crack Hot leg leak 200 cm?, Submodel for crack in
SST515- 67° N - . . .
SSTsts 112 / : \_ SsTete-ter geometry cylindrical region, flaw depth 20 mm
SST51.7-247° / f \ SST51.3-202
ssT528-292°/ / i "\ SST51.4-337°
iy
sstas/ 1l |
@ 5000 : l256
i §
|
1 NN ‘
SST38 : )_ / = sséx\{“‘
! PUSSN
!
SST43.1- 20° |
SST432- 70° /
88T 43.3-110° 1
B ° Il
SST4557 200 7 _ssT®
SST43.6 - 250° K I
SST 43.7 - 290° - 2, h
ST 43.8-340° | Plattierung
.

[ - SST30
3 . AFF 41

' Example of crack Hot leg leak 200 cm?, Submodel for crack in nozzle
Reaktordruckbehélter .
JAA/ JAB 10 BB 001 geometry region, flaw depth 20 mm
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RPV Integrity Concepts

d Results of deterministic PTS analysis (example) [4]

Konvoi, cold leg nozzle, flaw depth 10 mm,
K,from J as a function of crack tip temperature
— KIc(RTNDT (Tang.)= 1,5 °C) > allowable material
200 / ' — KIc(RTNDT (Max.)= 13 °C) toughness properties

— KJ 015h hE_Stuizen_k 2SEP

KJ 025h hE_Stutzen_k 2SEP
160 / — KJ 100h hE_Stutzen k 2SEP
— KJ 040h kE_Stutzen_k 2SEP - leading transient

g — KJ 100h kE_Stutzen_k 2SEP
g 120 / ~ KJ 50h 4SEPK_Stutzen_k

S /_\\ — KJ 100h 4SEPk_Stutzen_k
- \\ KJ 200h 4SEPk_Stutzen _k
% 80 - /AIRN — : KJ 400h 4SEPK_Stutzen k

\\\\Q\é

0 50 100 150 200 250 300

crack tip temperature [°C]
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RPV Integrity Concepts

O Probabilistic PTS analysis [8], [?], [10], [11], [12], [13]
« Probability per year for failure and crack initiation of the RPV

« Define PTS-Screening Ciriterion (allowed reference temperature for a
maximum allowed failure probability, see [10])

« Quantify the margins of the deterministic PTS analysis

175 - max. allowable RPYV failure frequency = 1.0E-06

3.31E-07 (192E19 n/cm?)
™~

& 1.39E-07 (164E19 n/cm?)

150 | 1 - ]
& 7.89E-08 (148E19 n/cm?) \
4.97E-08 (137E19 n/cm?)

|

125 °

1.31E-08 (110E19 n/em?)
.[ 6.93E-09 (99E 19 n/cm?)

100 ® | 92E-09 (82E19 nVcm?)
® 4.06E-10 (66E19 n/cm?)

R — t1.48E-1{|](55E19n/cm2)

1.47E-11 (44E19 n/cm?)

RTNoTmax (Ring II, Ring Mll) [°C]

56 B N
100 125 150 175 200 225 250 275 300
RTnpr,max (Corenaht) [°C]
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IRRADIATION BEHAVIOUR




Specific Issues in Iradiation Behaviou @ER|A

d Chemical composition
d Advantageous RPV design feature
d Long Term operation (see presentation J. May: “RPV Long-
Term Operation Issues” and references [16-22], [24-26])
* Neutron flux effects
* Late blooming effects
» Predictive models
« Reconstitution technique
« Countermeasures

O National particularities in RPV irradiation surveillance
programmes
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Specific Issues in Iradiation Behaviou

d Chemical composition

» Impact of high contents of Cu and Niin RPV steel welds on T,; shift

200
H P141 BM
180 .4 AP7BM
160 ¢ P147 BM
. . O
140 High Cu or Ni P14l WM
// P16 WM
z 120 S AKS05 WM
g 100 © P370 WM
|_
< 80
L~ H. Hein, et al
60 ¢ / “Final Results from the Crack Initiation and
A’/ Arrest of Irradiated Steel Materials Project on
40 V'Y Fracture Mechanical Assessments of Pre-
_— — A n Irradiated RPV Steels Used in German PWR’
20 ‘_ Journal of ASTM International (2010),
Low Cu and Ni STP 1513 on Effects of Radiation on Nuclear
0 —0 . . Materials and the Nuclear Fuel Cycle: 24t

0,0E+00 1,0E+19 2,0E+19 3,0E+19 4,0E+19 5,0E+19 6,0E+19 Volume [15]
Neutron fluence ® [cm™®] (E>1MeV)

Low irradiation embrittlement for most of the irradiated materials
except for weld metals P370 WM (0,22 % Cu) and P16 WM (1,7 % Ni)

03/09/2018 SOTERIA Training School - September 2018 - Polytechnic University of Valencia 34



Specific Issues in Iradiation Behaviou

ad Advantageous RPV design feature: large water gap

« Neutron fluencesin n/cm? ( E > 1 MeV) after 32 EFPY for German PWR
[23] 1300 MWe B

360 MWe 670 MWe 1000 MWe

124m
10.1m

||~ *0.33m *0.42m *0.71m *0.775 m
4—__-" ——— " ——

121 Fuel Assemblies 157 Fuel Assemblies 177 Fuel Assemblies 193 Fuel Assemblies
* Distance Between Core Edge and RPV Surface Including Water and Steel Layers.

2,8E19 1,3E19 1E19 3E18
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Specific Issues in Iradiation Behaviou

O National particularities in RPV irradiation surveillance programmes

» Special publication of technical experts from 11 countries on RPV
irradiation surveillance programs [27] —

— Topics discussed include actual surveillance
capsule testing and associated results;
applications to evaluating the irradiated
material toughness results; and identification

of problem areas identified from conducting W e o,
infernational surveillance programs. Lz International Review of
) o . _ e Nuclear Reactor
— 24 peer-reviewed papers divided into five key Pressure Vessel
categories: I - Surveillance
| Programs

- Bases for RPV Surveillance Programs : sTP1603
itors:
William L. Server

— Neufron Dosimetry for Surveillance Programs ~ i Milan Brum
— National Surveillance Programs
— Surveillance for Long-Term Operation

— Experience from Surveillance Programs
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Outlook ERIA

d Annual construction starts and connections to the grid (1954-2016)

Number of reactors

« Tendency of increasing number of new NPP builds between 2004 — 2010
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|IAEA Reference Data Series No.2 2017 Edition
Nuclear Power Reactors in the World [14]

03/09/2018 SOTERIA Training School - September 2018 - Polytechnic University of Valencia 37



O Reactor Pressure Vessel (RPV) is very important for reactor
operation and safe inclusion of fission products

A Irradiation by fast neutrons is the most
Important ageing mechanism of the RPV

d RPV irradiation behavior is managed by
dedicated irradiation surveillance programmes
(mechanical testing of specimens irradiated
nearer to the core)

A Surveillance results are used in RPV integrity
assessment

d Proof of safety against brittle fracture of the
RPV is mandatory
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