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GENERAL Context

▪ FFT based solvers for heterogeneous materials 

▪ The AMITEX_FFTP code (specificities and use)

SOTERIA Context 

▪ Stresses at Grain Boundaries 

▪ Application to RPV steels

Outline
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Heterogeneous materials
 Porous ceramics

Ackermann &al. Materials 2014

 SiC/SiC composite tube

from CHEN Y. Thesis, CEA, ENPC, 2017

 Concrete

from F. Bernachy, CEA, 2017

 Polycrystals => SOTERIA application!

General context

M. Dexet thesis, CEA, LMS-X, 2006 Microgrid Experimental

displacement field

Experimental

strain field Macroscopic response
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 Simulation of heterogeneous materials
▪ A « Representative » Volume Element (RVE)
▪ A Constitutive behavior law for each phase 
▪ An « Average loading » : uniaxial stress (tensile test) for example
▪ A type of Boundary Conditions: Periodic BC is a good choice

▪ Increase the spatial resolution to obtain a better description of local fields
▪ Increase the size of the RVEs to obtain representative results
▪ « Physically based »  constitutive behaviors are more and more complex

 Natural trends 

▪ Numerical limits (memory size & computation time)

 Standard FEM solvers

 « FFT-based » solvers

▪ No tedious meshing procedure (input=digital image)

▪ Much more efficient than standard FEM solvers

▪ Easy to implement

▪ Well-suited for Parallelism => PUSH BACK THE LIMITS!

FFT-based solvers for heterogeneous

materials
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 FIX-POINT algorithm (Moulinec-Suquet 1994)
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Problem to solve
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Auxiliary problem

Moulinec-Suquet,1994
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Rewriting of the problem Exx  )(*)( 0 

Applying the Green operator
Simple in Fourier space (FFT)

Mura 1997

Solution for the auxiliary problem

)(:))(()( 0 xcxcx  

FFT-based solvers for heterogeneous

materials
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 Drawbacks of the method as proposed in 1994 by Moulinec & Suquet

Sensitivity to 

the elastic contrast

Sensitivity to 

the reference material

Spurious Oscillations

Uniaxial Strain

05/09/2018

FFT-based solvers for heterogeneous

materials
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 A lot of work and improvements since 1994! 

➢ Modified Discrete Green Operator (Willot 2015, Schneider 2016…)

sensitivity to the elastic contrast

spurious oscillations

➢ Algorithms (Zeman 2010, Brisard 2010, Gélébart 2013…)

sensitivity to the reference material

➢ Composite voxels (Kabel2015, Gélébart 2015…)

spurious oscillations

(very efficient for thin interphases)

05/09/2018

FFT-based solvers for heterogeneous

materials
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 Discrete Green operators

▪ CLASSICAL DGO : truncated Continuous Green Operator (Moulinec-Suquet 1994) 

𝑖 ො𝜎. 𝒌𝒂 = 𝟎
Ƹ𝜀 = 𝑖𝒖∗⨂𝑠𝑦𝑚𝒌𝒂
ො𝜎 = 𝑐0: Ƹ𝜀+ Ƹ𝜏

Ƹ𝜀 = −Γ0: ෝ𝜏
𝒅𝒊𝒗 𝜎 = 𝟎
𝜀 = (𝑔𝑟𝑎𝑑 𝒖 )𝑠𝑦𝑚

𝜎 = 𝑐0: 𝜀 + 𝜏

𝑢, 𝜀, 𝜎 at voxels centers

▪ MODIFIED DGO : DISCRETE DIFFERENTIAL OPERATORS = contour integrals

at voxels centers𝜀 = (𝑔𝑟𝑎𝑑 𝒖 )𝑠𝑦𝑚≅
1

𝑣
න
𝝏𝒗

𝒖⨂𝑠𝑦𝑚𝒏 𝑑𝑠at voxels corners𝒖

𝜎 at voxels centers at voxels corners𝒅𝒊𝒗 𝜎 ≅
1

𝑣
න
𝝏𝒗

𝜎. 𝒏 𝑑𝑠

𝑖 ො𝜎. ෪𝒌𝒂 = 𝟎

Ƹ𝜀 = 𝑖𝒖∗⨂𝑠𝑦𝑚෪𝒌𝒂
ො𝜎 = 𝑐0: Ƹ𝜀+ Ƹ𝜏

Ƹ𝜀 = −෩Γ0: ෝ𝜏…

05/09/2018

FFT-based solvers for heterogeneous

materials



Sensitivity to the 
Elastic contrats

Classical DGO Modified DGO

 Modified Discrete Green Operator

Classical DGO

Modified DGO

Uniaxial Strain

FFT-based solvers for heterogeneous

materials
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Linear FINITE ELEMENTS with Reduced integration (Schneider &al., IJNME 2016)

 Modified Discrete Green Operator

05/09/2018

FFT-based solvers for heterogeneous

materials



FEM code

CAST3M 

Linear Elnt with Reduced Integr.

AMITEX_FFTP

With modified DGO

AMITEX_FFTP : a FE method with an FFT-based solver

FFT-based solvers for heterogeneous

materials

 Modified Discrete Green Operator
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 Highly parallel implementation (MPI)

▪ Models

• Mechanics : SMALL STRAINS and FINITE STRAINS

• Diffusion

▪ Various loading types 

▪ Algorithm

• Fix Point + Convergence acceleration

▪ Behavior

• User defined : umat compatibility => coupling with mfront!

• « Composite » voxels

The AMITEX_FFTP code

http://www.maisondelasimulation.fr/projects/amitex/html/overview.html

old version on the website, to be refreshed
contact L. Gelebart for a recent version

05/09/2018

http://www.maisondelasimulation.fr/projects/amitex/html/overview.html
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 Highly parallel implementation (distributed memory with MPI)

Distributed memory  // 

implementation

(MPI)

▪ Behavior : « local » in real space

▪ Green Operator : « local » in Fourier space

▪ FFT & iFFT : « non-local » (needs data transfer)

The AMITEX_FFTP code

05/09/2018
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 Highly parallel implementation (MPI)

✓ Decomposition 1D (slabs)

Image N3

N processes max

-> Not so much for HPC!

▪ 3D-FFT = succession of 1D-FFT

▪ Decomposition

Requires the transposition of data

• Communications (MPI_ALLTOALL)!

• 2decomp library

http://www.2decomp.org/

✓ Decomposition 2D (pencils)
http://www.2decomp.org/

Image N3

N2 processes max

The AMITEX_FFTP code

05/09/2018

http://www.2decomp.org/
http://www.2decomp.org/


▪ Polycrystal (voronoï), dislocation-based Crystal Plasticity (49 var.int.), Small 
Strains

▪ Cluster poincare (Maison de la Simulation) 16 cores (2x8) / node  sandy 

bridge E5-2670 

Weak scalability

Number of nodes = N, Problem size = NxK0
Elapsed time on 1 node : tref

Elapsed time on N nodes : tN

64 nodes

1024 cores

IDEALLY :    tN = tref

1 node

16 cores

1283

5123

The AMITEX_FFTP code

 Highly parallel implementation (MPI)
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mpirun  amitex_fftp –nm mate.vtk -nz zone.vtk -m Material.xml -c Loading.xml -a Algorithm.xml -s result

To run amitex in // The output

In our case (a polycrystal) : 
• only ONE material : “-nm mate.vtk” can be omitted (the ID is 1 everywhere)
• the grain definition is given by the 3D image zone.vtk

 The default output : 
• unit cell and “per material” average (and std dev.) of stresses and strains 

at each computation time

The microstructure consists of : 
• one or different materials (one material = one constitutive law) 

mate.vtk : 3D image defining the ID of the materials
• each material can be devided in different zones (where the coefficients are constants)

zone.vtk : 3D image defining the ID of the zones

 Input geometry : 3D images (vtk format) :  mate.vtk and zone.vtk

The AMITEX_FFTP code

Geometry

05/09/2018
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<?xml version ="1.0" encoding="UTF-8"?>

<Algorithm_Parameters>

<Algorithm Type="Basic_Scheme">

<Convergence_Acceleration Value="true"/>

<Convergence_Criterion Value="Default"/>    

</Algorithm>

<Mechanics>

<Filter Type="Default"/>                                      

<Small_Perturbations Value="false"/>                

</Mechanics>

</Algorithm_Parameters>

Algorithm = Fix-point (Basic_Scheme) 
+ Convergence acceleration

+ default criterion : 10-4

Use of the modified Discrete Green Operator (Filter
Type="Default")

+ Finite Strains framework

 Algorithm.xml

The AMITEX_FFTP code

05/09/2018
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<?xml version="1.0" encoding="UTF-8"?>

<Loading_Output>

<!-- OUPUT QUANTITIES -->

<Output>

<vtk_StressStrain Strain = "1" Stress = "1"/>

<Zone numM="1"> </Zone>

</Output>

<!-- SUCCESSIVE LOADINGS (only one here)-->

<Loading Tag="1">

<Time_Discretization Discretization="Linear" Nincr="1000" Tfinal="333.33"/>

<Output_vtkList>18 40 80 160 320 640 1000</Output_vtkList>

<Output_zone Number="50"/>

<!-- tensile test in the z direction -->

<xx Driving="Stress" Evolution="Constant"  />

<yy Driving="Stress" Evolution="Constant"  />

<zz Driving="Strain" Evolution="Linear" Value="0.1" />

<xy Driving="Stress" Evolution="Constant"  />

<xz Driving="Stress" Evolution="Constant"  />

<yz Driving="Stress" Evolution="Constant"  />

<yx Driving="Strain" Evolution="Constant"  />

<zx Driving="Strain" Evolution="Constant"  />

<zy Driving="Strain" Evolution="Constant"  />

</Loading>

</Loading_Output>

Additionnal outputs :  

Stress and strain fields

« Per zone » average and std dev.

Computation time discretization

Increments for fields outputs (vtk format)
Number of « per zone » output (equally spaced in time)

Evolution the average applied tensor :

9 components

if Driving = Stress : Piola-Kirchoff stress

if Driving = Strain : Displacement

gradient

Remark : 6 components in small strain framework

if Driving = Stress : Cauchy stress

if Driving = Strain : Linearized Strain

 Loading.xml

The AMITEX_FFTP code

05/09/2018
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<?xml version="1.0" encoding="UTF-8"?>

<Materials>

<!-- REFERENCE MATERIAL -->

<Reference_Material Lambda0=" 2.0431e+5" Mu0="0.8756e+5"/>

<!-- MATERIAL 1 -->

<Material numM="1" Lib="/home/gelebart/SIMULATIONS/libUmatAmitex.so" Law="umatBCCSOTERIA" >

<Coeff Index="1" Type="Constant" Value="236.412E3"/>

.

.

<Coeff Index="27" Type="Constant" Value="200"/>    

<Coeff Index="28" Type="Constant_Zone" File="/home/gelebart/SIMULATIONS/PHI1.or" />

<Coeff Index="29" Type="Constant_Zone" File="/home/gelebart/SIMULATIONS/PHI.or" />

<Coeff Index="30" Type="Constant_Zone" File="/home/gelebart/SIMULATIONS/PHI2.or" />

<IntVar Index="1" Type="Constant" Value="0."/>

<IntVar Index="2" Type="Constant" Value="0."/>

.

. 

<IntVar Index="107" Type="Constant" Value="0."/>

</Material>

</Materials>

Constant coefficients

Constant per zone coefficients :

=> Euler angles of each grain

Initial internal variables

Name of the dynamic library

+ Name of the behavior law

Lamé coefficient of the 

reference material

The AMITEX_FFTP code

 Material.xml

05/09/2018
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 The SOTERIA umat BCC implementation :

$ ls *.F

det.F

inv.F

jaconr86.F  

ugd_algebre.F

ugd_cine.F

ugd_rk21.F  

ugd_rk43.F  

ugd_rkmod.F

ugd_umat.F

umat.F

$ more umat.F

SUBROUTINE UMATBCCSOTERIA ( STRESS, STATEV, ddsdde, sse, spd, scd,

&                  rpl, ddsddt, drplde, drpldt,

&                  STRAN, DSTRAN, TIME, DTIME,

&                  TEMP, DTEMP, PREDEF, DPRED,

&                  CMNAME, NDI, NSHR, NTENS, NSTATV,

&                  PROPS, NPROPS, COORDS,

&                  drot, pnewdt, celent, DFGRD0, DFGRD1,

&                  NOEL, NPT, layer, kspt, KSTEP, KINC )

.

.

.

▪ a Makefile to automatically generate the dynamic library libUmatAmitex.so from the 
Fortran files

▪ A set of Fortran files (L. Vincent) ▪ Compatible with the umat format

The AMITEX_FFTP code

▪ The same Fortan implementation of the behavior law can be used in :
• AMITEX_FFTP 

• CAST3M (the CEA FEM code) 

▪ No need to modify the AMITEX source code to introduce a new behavior law !

05/09/2018
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SOTERIA context

 Reliability of the Reactor Pressure Vessels

Microstructure 

Informed Brittle

Fracture model

Defect distribution

Failure probability

Stress distribution

Applied stress Microstructure Crystal Plasticity

Numerical Simulation (FE/FFT)

Di5.7 G. Monnet

& L. Vincent

05/09/2018
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Microstructure 

Informed Brittle

Fracture model

Stress distribution

FE
▪ Per grain average stress

PERFOM60 (2007-2011) SOTERIA (2014-2018)

FFT-based simulation
▪ Per grain average stress

▪ Large number of grains (>1000?)

▪ Average stress at Grain Boundaries

▪ Improved Crystal Plasticity law

INTRA-granular brittle
fracture

INTER-granular

Brittle fracture

SOTERIA context

 Reliability of the Reactor Pressure Vessels
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Stresses at grain boundaries

Methodologies to evaluate stresses at grain 

boundaries from FFT simulations

 Validation with FEM (and a conforming mesh)

 Extension to Finite Strains

 Application to RPV steels

05/09/2018
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 Remark for FEM (conforming mesh)

Stresses are defined at Gauss Point (not on the grain boundary)

Grain Boundary (2D)

Even with a conforming mesh, the 

evaluation of stresses at grain 

boundaries is not straightforward!

Stresses at grain boundaries

05/09/2018
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 Methodology for FFT (regular grid)

The « mesh » does not 

coincide with grain 

boundaries

Stresses at grain boundaries

05/09/2018
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Stresses are defined on voxels

PROPOSITION 1

Post-treatment:

projection of the stress field on 

grain boundaries

Stresses at grain boundaries

05/09/2018

 Methodology for FFT (regular grid)
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PROPOSITION 2

« Composite » voxels to 

account for grain boundaries

in FFT simulations

+ PROPOSITION 1 

(post treatment)

Stresses at grain boundaries

05/09/2018

 Methodology for FFT (regular grid)
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PROPOSITION 2

« Composite » voxels to 

account for grain boundaries

in FFT simulations

+ PROPOSITION 1 

(post treatment)

Stresses at grain boundaries

05/09/2018

 Methodology for FFT (regular grid)



29

✓ Grain Boundary decomposition

• Each GB is devided into « facets » 

• One « facet » = intersection between a GB and voxel

➢ polygon with 3, 4, 5 or 6 corners

➢ To be improved for triple lines

• One « composite » voxel :

➢ Facet area  Si

➢ Volume Fractions

➢ Normal vector niP
R

E
-T

R
E
A

TM
E
N

T

✓ Evaluating average normal stress at Grain Boundaries

𝑡 =
σ𝑛𝑖 . (𝜎𝑖 .𝑛𝑖)𝑆𝑖

σ𝑆𝑖P
O

S
T

DEVELOPMENT OF SPECIFIC PRE AND POST TREATMENTS

Stresses at grain boundaries

 Methodology for FFT (regular grid)
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 Validation with FEM (CAST3M)

▪ A 27grains periodic Voronoi

aggregate

▪ A simple Crystal Plasticity law

Anisotropic elasticity (austenitic steel)

12 slip systems (FCC)

Norton law (τ0=200MPa, 𝐧=10, ሶγ0=10-4s-1) 

▪ Loading : uniaxial tensile test (1%, 10-4s-1)

Stresses at grain boundaries

05/09/2018
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 Result :« Per Grain Boundary » average normal stresses (167 Grain Bound.)

✓ Good agreement FFT/FEM

✓ FEM probably not fully converged

✓ No significant effect of composite 

voxels (FFT+laminate)

8  Grain Boundaries

4 with the best FE/FFT agreements

4 with the worst agreements

Stresses at grain boundaries

05/09/2018
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 Result : normal stress field at grain boundaries

FEM

FFT

FFT+comp.vox

Composite voxels « smooth » 

spurious oscillations

Stresses at grain boundaries
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 Extension to Finite Strains

The grain boundary (initially plane) : rotates and deforms !

▪ The intersection of GB with the grid is known in the 

reference configuration (n𝑖
0, δSi

0)

✓ FFT : the GB is not meshed explicitely… but

σ𝑔𝑏 =
S n. 𝛔. n𝑑𝑆

S
≅
σn𝑖 . 𝛔i. n𝑖δSi

σδSi

(n𝑖
0, δSi

0)

▪ Surface average of the normal stress in the deformed configuration

niδSi = det 𝐅i 𝐅i
−T. n𝑖

0δSi
0

▪ Transport equation of an infinitesimal surface vector:  

δSi = det 𝐅i 𝐅i
−T. ni

0 δSi
0

n𝑑𝑆 = det 𝐅 𝐅−𝑇 . n0𝑑𝑆0

ni =
𝐅i
−T. ni

0

𝐅i
−T. ni

0

✓ FEM : evaluation of the normal stress on the deformed mesh of the GB

Stresses at grain boundaries
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Application to RPV

 SOTERIA Crystal Plasticity law for BCC (Finite Strains) (G.Monnet EDF & L. Vincent CEA)

▪ Microstructure

▪ Voronoï 729 grains
▪ Resolution r = 7, 15, 31

▪ Temperatures : 173K, 273K

▪ Tensile test : 10%, 3.10-4 s-1

05/09/2018



Macroscopic Behavior

« cubic » simplified microstructure 

OK for macroscopic behavior

729 grains

Cubic r=1 : ~ 5min /1 node (12 procs)

Voronoï r=7 : ~30 min /10 nodes (280procs)

r=15: ~3h /10 nodes (280procs)

r=31: ~10h /30 nodes (840procs)

T=173K

T=273K

05/09/2018

Application to RPV
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 Per Grain average stress distribution (729 grains)

T=173K T=273K

Input for MIBF for INTRA-granular fracture
Resolution 7 is enough !

(Axial stress) (Axial stress)

10%6.4%0.18% 0.18%

05/09/2018

Application to RPV
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 Per Grain Boundary average stress distribution (4445 GB) 99% of the total area

T=173K T=273K

Input for MIBF : INTER-granular fracture

Resolution 7 is enough !

05/09/2018

Application to RPV
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𝛼 =
𝜎173𝐾
𝜎273𝐾

with

𝐹173𝐾 σ𝑔𝑏 ≅ 𝐹273𝐾 σ𝑔𝑏 × 𝛼

0,4% 10%

Temperature extrapolation ?

05/09/2018

Application to RPV

 Per Grain Boundary average stress distribution (4445 GB) 99% of the total area
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T=173K

The rotation (and 

deformation) of the GBs is

significant (red points)

Effect of the GB rotation (and deformation)?

05/09/2018

Application to RPV

 Per Grain Boundary average stress distribution (4445 GB) 99% of the total area
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 USE for MIBF : a model fitted on the distribution of stresses at GB (P. Forget Di5.6.1)

05/09/2018

Application to RPV
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Conclusions

 GENERAL context

▪ FFT-based solvers : 

a very powerfull technique for the simulation of heterogeneous

materials

▪ AMITEX_FFTP : 

efficient parallel code, 

quite general (lots of possible applications),

quite simple to use

 SOTERIA context
▪ Evaluation of stresses at GB : OK with FFT

▪ Application to RPV : RPV Crystal AMITEX MIBF

Plasticity Law INTRA+INTER

05/09/2018


