

NANOFEATURE EVOLUTION MODELS FOR IRRADIATION EFFECTS IN RPV AND INTERNALS

Pär Olsson KTH Royal Institute of Technology Stockholm, Sweden polsson@kth.se

This project received funding under the Euratom research and training programme 2014-2018 under grant agreement N° 661913

Outline

Introduction

- Physics basis finding mechanisms
- Multiscale models of nanofeature evolution in RPV steels
 - Predictive multi-scale modeling of FeCu and FeCr
 - Neutron irradiation and solute cluster growth in RPV steels

Modeling ion beam conditions – the role of injected interstitials in austenitic alloys

Irradiation effects are inherently a multiscale problem

 $1 \text{ fs} = 10^{-15} \text{ s}$

1-100 ps = 10^{-12} - 10^{-10} s ns = 10^{-9} s ns = 10^{-3} s 1 s 10^3 s

Time scale

 $10s \text{ of } nm = 10^{-8} \text{ m}$

 $100s \text{ of } nm = 10^{-7} \text{ m}$

Irradiation effects are inherently a multiscale problem

10s of μ m = 10⁻⁵ m

Relevant phenomena and appropriate computational methods for microstructure

P	henome	ena						void swe	elling, hardening,
single displacement cascade			ment	multiple cascades, cascade overlap		defect and solute migration and clustering		embrittlement, creep, stress corrosion cracking,	
cc pł	ollisional nase	qu	enching	g annealing phase	defec diffusio	t/solute on	micros evoluti	tructure on	mechanical property changes
1	0 ⁻¹⁴ s	1	0 ⁻¹¹ s	10 ⁻⁸ s	_10 ¹ s		10 ⁴ s	~	> 10 ⁶ s
Me	ethods	mol	ecular o	dynamics	k	kinetic <i>N</i>	Ionte Carlo		ficite close out
C	ab initio		MD di	slocation dyn	amics		reaction ro theory, ph 3D disloca dynamics	ate ase field tion	
	10 ⁻⁹ m			10 ⁻⁷ m			10 ⁻⁶ m		> 10 ⁻³ m

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

17/09/2018

THE PHYSICS BASIS – FINDING MECHANISMS

Based on Deliverable D5.2 of the SOTERIA project

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Multiscale modeling: the physics basis

The models and methods are only as good as their input

- Important to use best possible physics basis
- Large effort in SOTERIA to develop a mechanistic understanding of nanofeature evolution in RPV and internals

- First part based on the following SOTERIA publications:
 - P. Olsson, C.S. Becquart, C. Domain, Mater. Res. Lett. 4 (2016) 219-225.
 - L. Messina, M. Nastar, N. Sandberg, P. Olsson, Phys. Rev. B 93 (2016) 184302.
 - L. Messina, N. Castin, C. Domain, P. Olsson, Phys. Rev. B **95** (2017) 064112.
 - N. Castin, L. Messina, C. Domain, R. C. Pasianot, P. Olsson, Phys. Rev. B 95 (2017) 214117.
 - M. Posselt, D. Murali, M. Schiwarth, Comp. Mater. Sci. **127** (2017) 284-294.
 - C. Domain, C.S. Becquart, J. Nucl. Mater. 499 (2018) 582-594.
 - C.S. Becquart, R.N. Happy, P. Olsson, C. Domain, J. Nucl. Mater. **500** (2018) 92.
 - N. Castin, M.I. Pascuet, L. Messina, C. Domain, P. Olsson, R.C. Pasianot, L. Malerba, Comp. Mater. Sci 148 (2018) 116.

1) Threshold displacement energies

- Ab initio MD used to determine TDE in bcc Fe
- Some effect on average value (of reactor relevance)
 32 eV vs 40 eV
- Anisotropy different than canonical/historical models
- How to run AIMD simulations very important (approximation levels)
- AIMD results quite important for near-threshold conditions (NRT and KP should be modified for low energies)

P. Olsson, C.S. Becquart, C. Domain, Mater. Res. Lett. **4** (2016) 219-225.

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

2) Free energy calculations in bcc Fe

- Operation conditions are far from the DFT 0K conditions
- □ Free energy effects can be important G = H - TS
 - Phonons, electrons, magnons, anharmonicity, ...
- Vibrational free energy effects for small vacancy-solute clusters in bcc Fe
- Effect of modeling paradigm
- Method range of validity
- Order of magnitude (0.1 eV) can be important at operation conditions!
 - Not yet implemented in higher scale models
- M. Posselt, D. Murali, M. Schiwarth, Comp. Mater. Sci. 127 (2017) 284-294.

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

2) Free energy calculations in bcc Fe

M. Posselt, D. Murali, M. Schiwarth, Comp. Mater. Sci. 127 (2017) 284-294.

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

3) Solute – vacancy **interactions** and kinetics in bcc Fe

- DFT database of solute-vacancy interactions
- Binding energies follow clear trends
- □ 3d-solutes affected by magnetism, 4d- and 5d mostly size effects

3) Solute – vacancy interactions and **kinetics** in bcc Fe

- Self-consistent mean field theory coupling
- Solute drag by vacancies a general phenomenon (not limited to 1nn binding solutes!)

3) Solute – vacancy interactions and **kinetics** in bcc Fe

Prediction of solute diffusion coefficients in good agreement with experiments

Divergencies well understood

Showcase of how to get low-T diffusion data

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

4) Solute – defect cluster interactions

- Large scale DFT calculations (1500 atoms)
- Provides new insight on how small SIA clusters interact with solutes
- Given attraction strength small defects will "always" be trapped by solutes
- Some surprises!
 - Attracting/binding very general phenomenon
 - Size effects dominating (but also magn + local coordination)
 - Cr non-interacting (contradicting earlier work)

MULTISCALE MODELS OF NANOFEATURE EVOLUTION IN RPV STEELS

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Machine learning nanoscale evolution tools

- Artificial neural networks have recently begun to be applied to nanoscale evolution
- In SOTERIA, ANN's were trained exclusively on DFT data (migration barriers) to transfer the physics basis fully to the nanoscale evolution
 - Examples:
 - FeCu + vacancies
 - FeCr + vacancies, SIAs
- A few thousand configurations required for each case (NEB's)
- The ANN drives a hybrid AKMC/OKMC model

Machine learning nanoscale evolution tools

- Successful training, good correlation factors
- The KMC simulations evolve according to the AKMC method, but when clusters grow beyond a threshold size, they become objects
- The OKMC part is first parameterized using AKMC
- Rapid KMC code framework
- Nanoscale evolution in FeCu and FeCr investigated

Machine learning nanoscale evolution tools

- Thermal ageing of FeCu
- No parameter adjustment – fully ab initio $\rightarrow KMC$
- Very good agreement for 1.34% Cu
- Overestimated Cucluster density for 0.6% $C \cup \rightarrow DFT$ solubility limit known issue for FeCu
- DFT physics fully transmitted to the KMC

N. Castin, M.I. Pascuet, L. Messina, C. Domain, P. Olsson, R.C. Pasianot, L. Malerba, Comp. Mater. Sci 148 (2018) 116. 19

Machine learning nanoscale evolution tools

- The material evolves according to the AKMC method, but when clusters grows beyond a threshold size, it becomes an object
- The OKMC part is first parameterized using AKMC
- Rapid KMC code framework
- Nanoscale evolution in FeCu and FeCr investigated

L. Messina, N. Castin, C. Domain, P. Olsson, Phys. Rev. B **95** (2017) 064112. N. Castin, L. Messina, C. Domain, R. C. Pasianot, P. Olsson, Phys. Rev. B **95** (2017) 214117. N. Castin, M.I. Pascuet, L. Messina, C. Domain, P. Olsson, R.C. Pasianot, L. Malerba, Comp. Mater. Sci **148** (2018) 116. 20

Machine learning nanoscale evolution tools

Improved KMC/MD motor by fitting ANN potentials

Many more barriers can be used by training KMC motor on ANN potential predictions

Conclusions

- Machine learning can be used to transfer the physics basis directly through the KMC scale
- Same power of analysis of mechanisms but no control over parameters to adjust and perform sensitivity studies
- Very computationally demanding
- DFT-ANN-KMC simulations are predictive and in very good agreement with experiments

- Issue: Observed growth of solute clusters (Ni,Mn,...)
- Late-blooming effect or not?
- Mechanism for cluster growth?
- Object KMC model developed; Applied to model alloy and to RPV steel (Ringhals weld)

P. Efsing *et al.*, J. ASTM Int. **4** (2004). Miller et al., *Journal of Nuclear Materials* **437** (2013). US-NRC, Regulatory Guide 1.99 (1975).

APT maps

Object Kinetic Monte Carlo

- Computing efficiency
- Spatial distribution

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

No atomic configurations

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Modeling neutron irradiation in RPV steels

- Issue: Growth of solute clusters (Ni,Mn,...) observed
- Object KMC model developed
- Applied to model alloy and to RPV steel (Ringhals weld)
- Main ideas differentiating the alloy from the metal:
 - Grey alloy approach

17/09/2018

- SIA cluster diffusivity reduction due to solute interaction (from DFT)
- 1D/3D motion depending on cluster size

M. Chiapetto, L. Messina, C.S. Becquart, P. Olsson, L. Malerba, Nucl. Instr. Meth. Phys. Res. B **393** (2017) 105-109.

- Both SIA and vacancy cluster evolution is well represented by the model
- Importance of considering the experimental resolution!
- Dose rate effect:
 - clear predominance of single defects and smaller clusters at low dose rates

M. Chiapetto, L. Messina, C.S. Becquart, P. Olsson, L. Malerba, Nucl. Instr. Meth. Phys. Res. B **393** (2017) 105-109

Property	Fe-C-MnNi [28]	Ringhals welds [9]
Composition [at.%]	1.2% Mn, 0.7% Ni	1.37% Mn, 1.58% Ni
Temperature	290 °C	284 °C
Neutron flux	9.5.10 ¹³ n/cm ² s	1.5.10 ¹¹ n/cm ² s
Dpa flux	$1.4 \ 10^{-7} \text{ dpa/s}$	2.7 10 ⁻¹⁰ dpa/s [29]
Max dpa dose	0.2 dpa	0.12 dpa [29]
Carbon in matrix	134 at. ppm	100 at. ppm [30]
Dislocation density	7.10^{13} m^{-2}	NA
Average grain size	88 µm	NA

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Further model refinement:

- RPV dislocation density
- Role of dislocation bias
- Vacancy cluster parameters refined using AKMC

L. Messina, M. Chiapetto, P. Olsson, C.S. Becquart, L. Malerba, Phys. Stat. Solidi A **213** (2017) 2974

17/09/2018

□ Conclusions:

- In RPV steels, the mechanism proposed for the observed growth of small solute clusters (Ni, Mn, Si, ...) has been heterogeneous nucleation on defect clusters
- That mechanism is here strengthened the SIA cluster density perfectly matches the APT-seen solute cluster density
- Ab initio data and mean-field kinetics (many studies) support the mechanism

M. Chiapetto, L. Messina, C.S. Becquart, P. Olsson, L. Malerba, Nucl. Instr. Meth. Phys. Res. B **393** (2017) 105-109. L. Messina, M. Chiapetto, P. Olsson, C.S. Becquart, L. Malerba, Phys. Stat. Solidi A **213** (2017) 2974

17/09/2018 SOTERIA Training School - September 2018 - Polytechnic University of Valencia

MODELING ION BEAM IRRADIATION IN AUSTENITIC STEELS

The role of injected interstitials

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

- Ion beams often used as surrogates for neutron irradiation
 - Many issues with that! (flux, spatial distribution, injected SIAs, surface, ...)
- Injected SIAs have been shown to play a role (Lee JNM 1979)
- Cluster dynamics model developed here to study the issue in 304L steel

□ CRESCENDO code

B. Michaut, T. Jourdan, J. Malaplate, A. Renault-Laborne, F. Sefta, B. Decamps, J. Nucl. Mater. **496** (2017) 166-176

304L 450°C

5 dpa

40 dpa

100 dpa

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

F. Sefta, B. Decamps, J. Nucl. Mater. **496** (2017) 166-176

31

Self-ion irradiation of austenitic steel

- SRIM (and similar simulations) show how the damage and implantation fluxes vary with depth
- Any bias between
 SIA/vac can have
 important consequences
- Self-ion irradiation implants SIAs

17/09/2018

Spatial resolution (depth) introduced in CD

10²³

•

1022

□ Conclusions:

- Effect of injected SIAs (normally neglected) is important to consider
- Depth variation of freely migrating SIAs has significant effect
- More refined models needed
- Spatial resolution crucial considering strong depth dependence of damage

17/09/2018

SOTERIA Training School - September 2018 - Polytechnic University of Valencia

General conclusions

- A huge effort has been expended in the SOTERIA project to model the observed nanofeature evolution seen in RPV and internals under irradaition
- Advanced models and methods for the physics basis developed
- Mechanisms proposed from these results
- Larger-scale models (KMC, RT) have been developed to implement the mechanisms and investigate if they do explain the observations
- □ Many success stories!

17/09/2018 SOTERIA Training School - September 2018 - Polytechnic University of Valencia

Training School, 3 - 7 September 2018 Polytechnic University of Valencia (Spain)

Thank you for your attention!

PS. Read the many, many papers coming out of SOTERIA

17/09/2018SOTERIA Training School - September 2018 - Polytechnic University of Valencia