

HTL-based liquid fuel production: First results from the European collaborative project HyFlexFuel

A. Roth, K. Anastasakis, P. Biller, I. Johannsen, D. Castello, L. Rosendahl, F. Velghe

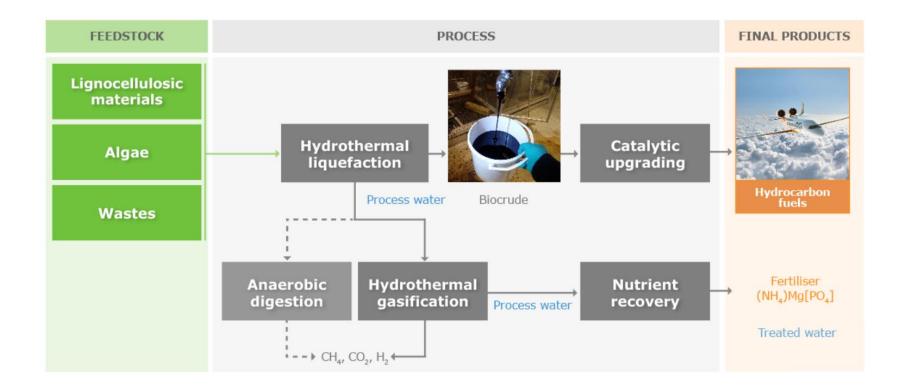
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764734

Outline

- The HyFlexFuel project
- First pilot-scale HTL campaign
- Catalytic upgrading of biocrude
- Anaerobic digestion of HTL process water
- Conclusions

Outline

- The HyFlexFuel project
- First pilot-scale HTL campaign
- Catalytic upgrading of biocrude
- Anaerobic digestion of HTL process water
- Conclusions



Development of a process chain to produce sustainable liquid fuels based on hydrothermal liquefaction of various biomass feedstocks

Specific objectives

- Demonstrate compatibility with diverse biomass feedstock portfolio (incl. algae and waste streams, such as sewage sludge)
- Increase energy and carbon efficiency through improved heat integration and product recovery
- Valorise organic and inorganic components in residual process streams
- Upgrade biocrude by catalytic hydrotreatment into fuel products and demonstrate their drop-in capability
- Assess technical, socio-economic and environmental performance potentials

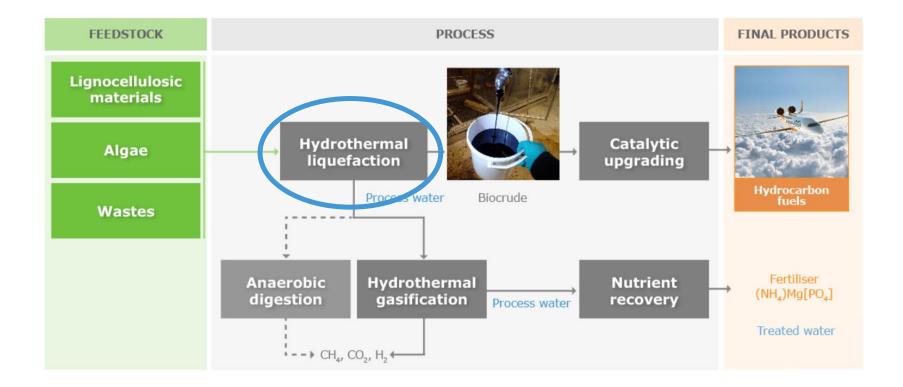
The HyFlexFuel process

5

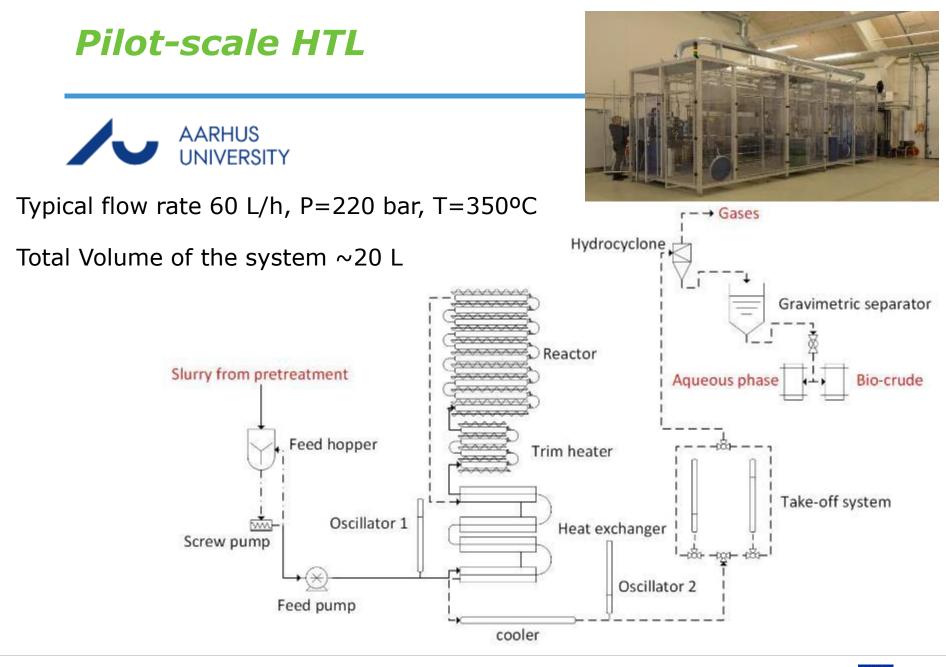
The HyFlexFuel project

First pilot-scale HTL campaign

Catalytic upgrading of biocrude


• Anaerobic digestion of HTL process water

Conclusions



The HyFlexFuel process

7

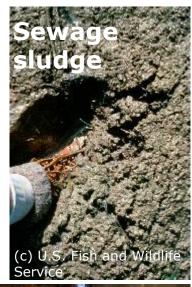
8

First HTL campaign

Three "model feedstocks"

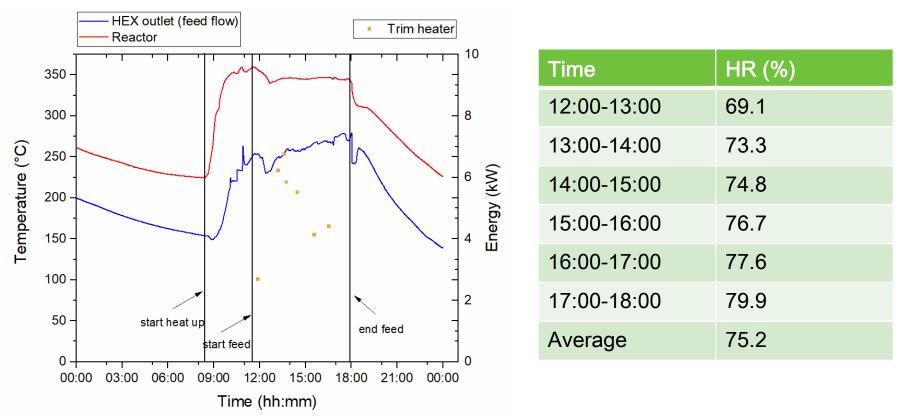
Input

 Slurry: 250 kg (Miscanthus, Spirulina), 500 kg (sewage sludge)



First HTL campaign

Three "model feedstocks"


Output

 >10 kg biocrude and >200 L aqueous phase per feedstock

Heat recovery in heat exchanger

- Heat recovery increases over duration of experiments
- Longer run times should further enhance heat recovery (> 80%)

Anastasakis et al., Assessing Hydrothermal Liquefaction of Lignocellulosic Biomass, Microalgae and Sewage Sludge at Pilot Scale, 26th European Biomass Conference & Exhibition, Copenhagen, 2018.

Process performance

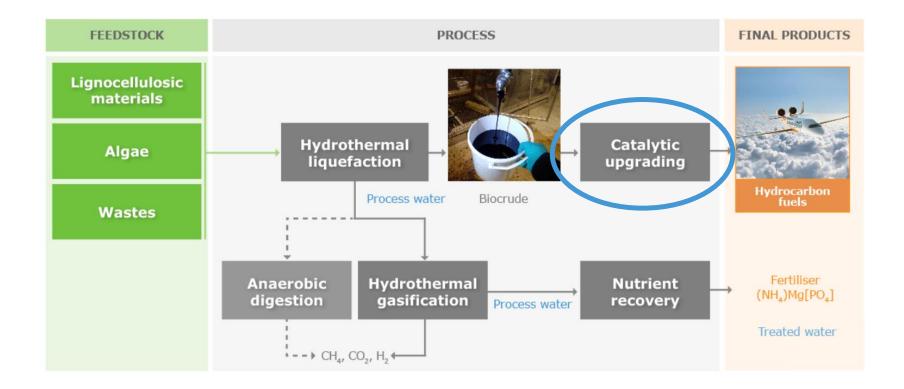
Anastasakis et al., Assessing Hydrothermal Liquefaction of Lignocellulosic Biomass, Microalgae and Sewage Sludge at Pilot Scale, 26th European Biomass Conference & Exhibition, Copenhagen, 2018.

	Miscanthus	Spirulina	Sewage sludge
Flow rate (L/h)	60	60	60
DM content (%)	0.15	0.16	0.04
Time (h)	1	1	1
Feedstock consumed (kg, dry)	9	9.8	2.4
Energy in feedstock (kW, dry)	42.7 (HHV=17.1MJ/kg)	63.1 (HHV=23.1MJ/kg)	13.2 (HHV=19.8MJ/kg)
Bio-crude yield (wt.%)	26.2	32.9	24.5
Energy in bio-crude (kW, dry)	19.9 (HHV=30.6 MJ/kg)	32 (HHV=35.6 MJ/kg)	4.4 (HHV=26.8 MJ/kg)
η _{th} (%)	46.5	50.7	33.2
Trim heater energy req. (kW)	4.4	5.5	5.4
Reactor energy req. (kW)	2	2.8	2.5
Main pump energy req. (kW)	0.7	0.7	0.7
η _{tot} (%)	39.9	44.4	20.1
	20.00		

HyFlexFuel

HTL campaign: Summary & outlook

- Successful liquefaction of three different feedstocks
 - Samples (biocrude, aq. phase, solids) could be supplied to partners
 - Heat recovery of up to 80%
 - Average biocrude yields 26.2% (Miscanthus), 32.9% (Spirulina) and 24.5% (sewage sludge)
- Further work will focus on improvement of process conditions (e.g. heat recovery, in-line filtration) and other feedstocks



- The HyFlexFuel project
- First pilot-scale HTL campaign
- Catalytic upgrading of biocrude
- Anaerobic digestion of HTL process water
- Conclusions

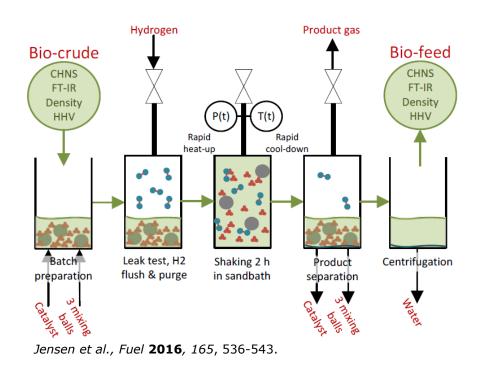
The HyFlexFuel process

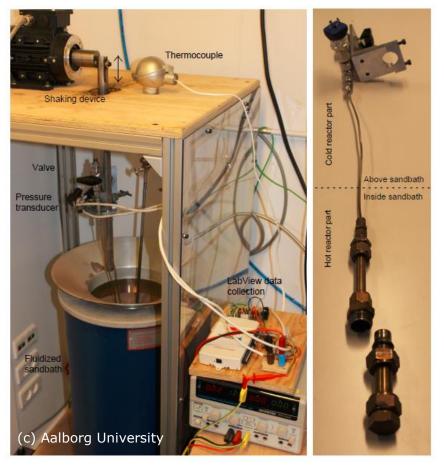
First catalytic upgrading experiments

- Catalytic hydrotreatment of biocrudes from first HTL campaign
 - Spirulina, sewage sludge, miscanthus
 - Batch mode
 - Screening of reaction conditions and pre-treatment procedures

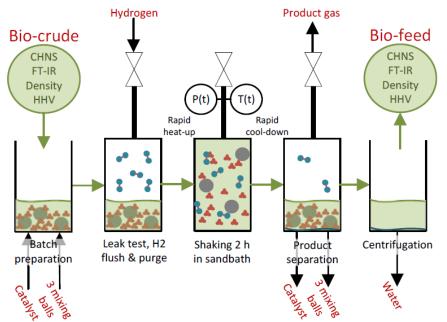
Objectives

- To identify sample-specific challenges
- To find suitable reaction conditions for upgrading campaigns in continuous mode
- To collect data enabling specific catalyst design


20.09.2018

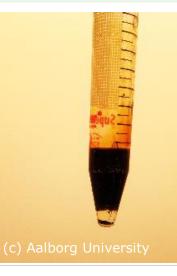


First catalytic upgrading experiments



First catalytic upgrading experiments

Reaction condition	Т (°С)	P ₀ (bar)	t (h)
Mild	250	40	2
Medium	300	60	3
Severe	300	80	4

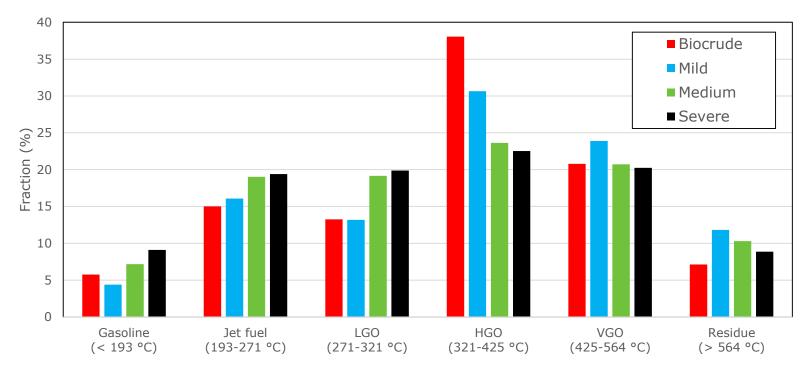

Jensen et al., Fuel 2016, 165, 536-543.

- Biocrude 4 g, Catalyst 2 g
- Commercial NiMo/Al₂O₃ catalyst
- Pre-sulfided

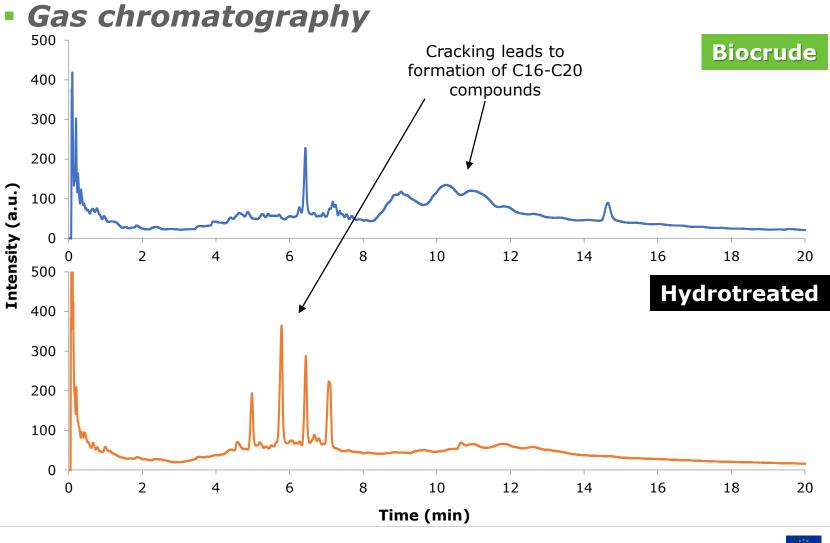
HyFlexFuel

Catalytic upgrading of Spirulina biocrude

	Dry ash free (wt. %)			H/C	de-O	de-N	
	С	н	N	0	(-)	(wt. %)	(wt. %)
Spirulina	53.5	7.2	12.6	26.6	1.62	-	-
Biocrude	78.1	10.4	8.0	3.5	1.60	86.8	36.7
Mild	79.2	10.8	7.4	2.6	1.63	90.2	41.2
Medium	79.7	11.7	6.3	2.3	1.76	91.4	50.1
Severe	81.0	12.1	6.0	1.0	1.79	96.4	52.7


- More severe conditions result in more effective removal of heteoratoms
- Increasing H/C ratio
- Relatively high deoxygenation
- Denitrogenation is around or below 50%

HyFlexFuel


Catalytic upgrading of Spirulina biocrude

Simulated distillation

- Simulated distillation according to ASTM D7169
- Increase in the lighter fractions, reduction of HGO

Catalytic upgrading of Spirulina biocrude

HyFlexFuel

20.09.2018

Catalytic upgrading: Summary & outlook

- First batch experiments on catalytic upgrading of HTL biocrudes conducted
- Fuel quality (H/C, de-O, de-N) substantially enhanced; de-N not yet sufficient
- Gasoline and middle distillate fraction increased
- Next steps
 - More screening experiments
 - Improvement of pre-treatment techniques
 - Taylored catalysts
 - First experiments in continuous mode

HALDOR TOPSOE

Catalytic upgrading: Summary & outlook

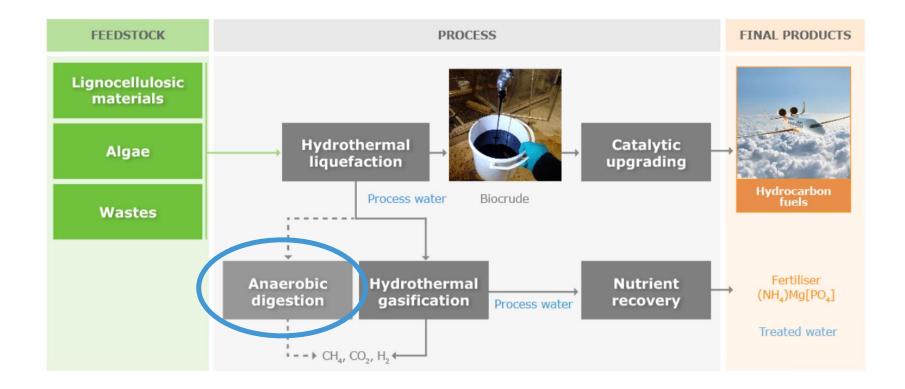
- First batch experiments on catalytic upgrading of HTL biocrudes conducted
 - More details and data from catalytic upgrading experiments in HyFlexFuel soon to be presented by D. Castello *et al.* on the **7th International Symposium on Energy from Biomass and Wastes**, Oct. 15-18, 2018, Venice
- Next steps
 - More screening experiments
 - Improvement of pre-treatment techniques
 - Taylored catalysts
 - First experiments in continuous mode

FL

er

• Ga

In


Outline

- The HyFlexFuel project
- First pilot-scale HTL campaign
- Catalytic upgrading of biocrude
- Anaerobic digestion of HTL process water

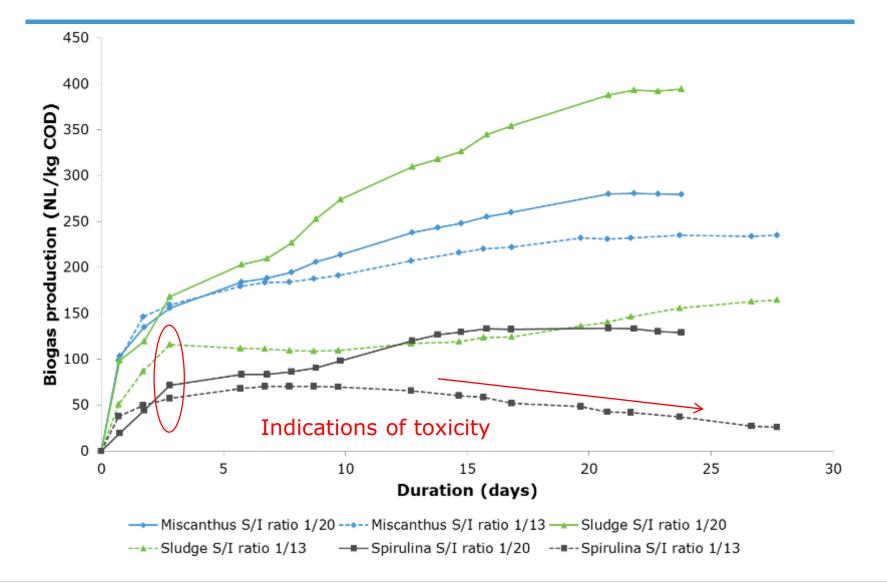
Conclusions

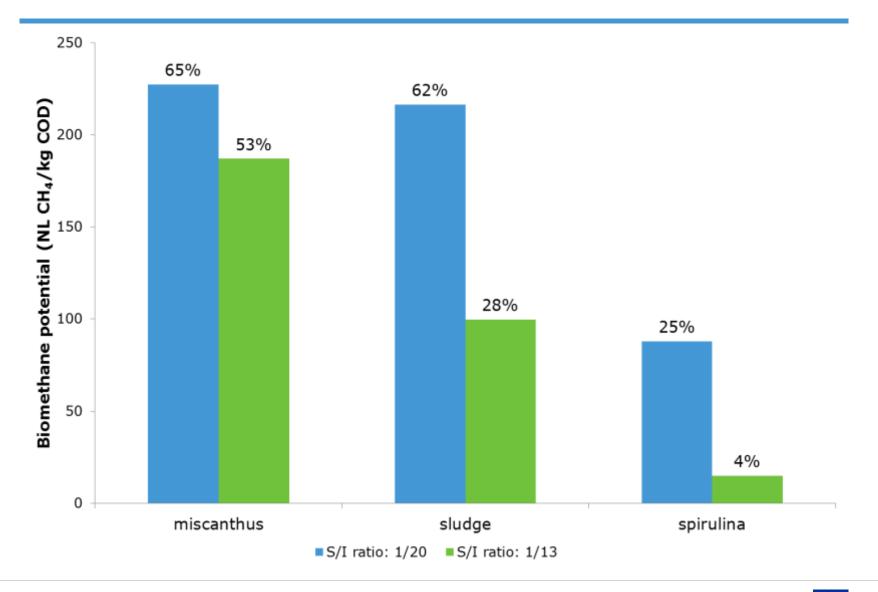
The HyFlexFuel process

25

26

Anaerobic digestion of HTL process water


- Biogas production potential test
- Goal:
 - **Determine max potential** •
 - Detect acute toxicity/deficiency
- Experimental setup
 - 10-100 g of substrate to 1 kg active inoculum
 - Typical duration: 14 days or until daily gas production < 1% of cumulative production
- Basis for continuous test set-up



Anaerobic digestion of HTL process water

Anaerobic digestion of HTL process water

Outline

- The HyFlexFuel project
- First pilot-scale HTL campaign
- Catalytic upgrading of biocrude
- Anaerobic digestion of HTL process water
- Conclusions

Conclusions

- HyFlexFuel develops a process chain for production of liquid fuels based on hydrothermal liquefaction
- First HTL campaign conducted
 - Successful liquefaction of Spirulina, sewage sludge, Miscanthus
 - Pilot-scale, relevant process conditions
- First batch experiments on catalytic upgrading of HTL biocrudes conducted
 - Deoxygenation successful; denitrogenation challenging
- Anaerobic digestion of HTL process water
 - Substantial methane formation, but also indication of toxicity observed

Thank you!

Arne Roth

Bauhaus Luftfahrt e.V. Willy-Messerschmitt-Str. 1 82024 Taufkirchen, Germany

<u>arne.roth@bauhaus-luftfahrt.net</u> +49 (0)89 307 4849-46

<u>www.hyflexfuel.eu</u> <u>hyflexfuel-arttic@eurtd.com</u> Follow us on Twitter @HyFlexFuel

